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1. INTRODUCTION

Cluster analysis has developed mainly through the invention and empirical investigation of

ad-hoc methods, in isolation from more formal statistical procedures. In recent years it has been

found that basing cluster analysis on a probability model can be useful both for understanding

when existing methods are likely to be successful, and for suggesting new methods (Symons

1981; McLachlan 1982; McLachlan and Basford 1988).

One such probability model is that the population of interest consists of G different

subpopulations, and that the density of a p -dimensional observation x from the k th

subpopulation is fk(x; 0) for some unknown vector of parameters 0. Given observations

x = (x1,. . . , x,), we let y=(y, .... , y )T denote the identifying labels, where Yi =k if xi comes

from the k th subpopulation. In the so-called classification maximum likelihood procedure, 0 and

y are chosev so as to maximize the likelihood

nL 0(x; f) f -t, (Xi; 0). (.l
i=l

Scott and Symons (1971) have worked out the solution when fk(x; 0) is multivariate nonnal

with mean vector iLk and variance matrix Zk , a distribution which we denote by MVN (Plk, Xk).

When Xk =o21 (k = 1, . . . , G) this reduces to the sum of squares criterion (Gordon, 1981),

while when Ek = Y (k = 1,.... G) it yields the criterion of Friedman and Rubin (1967). For a

more detailed review of these ideas, see Gordon (1981).

However, as currently implemented, the classification maximum likelihood procedure has

several limitations:

(1) It considers only the restrictive model where the covariance matrices are constant across all

clusters, or the unparsimonious model where they are arbitrary and unequal. The latter is

rarely used in practice, probably because of difficulties caused by its very generality and

lack of parsimony (Symons 1981). It would seem desirable to have criteria based on

intermediate models which allow some of the characteristics of the covariance matrices to

differ across clusters. For example, clusters may be elliptical with roughly the same size
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and shape, but oriented in different directions.

(2) It allows only for Gaussian distributions, whereas other distributions may be more

appropriate in some situations. An example of this arises frequently in unsupervised pattern

recognition, where edges may be represented by points clustered uniformly, rather than

normally, along a straight line.

(3) It does not, in general, allow for noise, or data points which do not fit the prevailing pattern

of clusters. Indeed, h .1, covariance matrices are unequal, each cluster must contain at

leastp+1 observations (Symons, 1981).

In this article, we present a framework for model-based clustering which is sufficiently

general to overcome these limitations. In Section 2, we develop maximum likelihood criteria for

Gaussian clustering which allow clusters to have different orientations or sizes, while preser ing

some common features, such as shape. In Section 3, we present practical criteria for non-

Gaussian clustering, and we extend the framework to incorporate Poisson noise. In Section 4,

we present a model-based approximate Bayesian approach to choosing the number of clusters. In

Section 5 we report the results of a Monte Carlo study of the methods presented, and in Section 6

we study their performance on three data sets, of which two are simulated and one is real.

2. ALLOWING ORIENTATION: ,D SIZE TO VARY BETWEEN CLUSTERS IN THE

GAUSSIAN CASE

When fk (x; 0) is a MVN (ltk, Ek) density, the likelihood (1.1) has the form

GL (x; 0,y ) = const. I'I r-I Xt I I-'/ exp{ -12(xi-jLk~,)7" 5-i1 (Xi-1k )}, (2.1)

k=1 iEEk

where Ek = (i: y =k ). The maximum likelihood estimator of 9k is xk =nk 1 1 xi, where nk is
i E Ek

the number of elements in Ek. Substituting this into (2.1) yields the concentrated log-likelihood

G
1 (x; 0,) = const.- /21 {tr(WkE 1) + nk log19 I , (2.2)
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where Wk is the sample cross-product matrix for the k th cluster, namely

wX, -X ) X i T
iE I

If lk = 2 (k = 1, .... G), then the log-likelihood (2.2) is maximized by choosing y so as

G
to minimize tr(W), where W = Y Wk . This is the sum of squares criterion which underlies, for

k=1

example, Ward's (1963) agglomerative hierarchical clustering method. If

Y k =l (k= 1, ... , G), then the log-likelihood (2.2) is maximized by choosing y so as to

minimize I W I, the criterion of Friedman and Rubin (1967). Finally, when the Ek are not

constrained in any way, the likelihood is maximized by choosing y so as to minimize

G W
E nk 10g1 1- This is similar to, but not the same as, equation (14) of Scott and Symons

k=1

(1971), which we have been unable to reproduce exactly.

Here we develop new criteria which are more general than that of Friedman and Rubin

(1967), but based on more parsimonious models than that of Scott and Symons (1971). They

allow some but not all of the features of cluster distributions (orientation, size and shape) to vary

between clusters, while constraining others to be the same. The key to this is a

reparameterization of the covariance matrix Yk in terms of its eigenvalue decomposition

Y-k = Dk Ak D[, (2.3)

where Dk is the matrix of eigenvectors and Ak is a diagonal matrix with the eigenvalues of Ek

on the diagonal. The orientation of the principal components of Ek is determined by Dk, while

Ak specifies the size and shape of the density contours. We write Ak = ?-k Ak, where Xk is the

first eigenvalue of Ek, Ak=diagt C,..., aptk), and l=lk>X2t>...Ctpk>O. Thus Dk

determines the orientation of the kth cluster, Xk its size, and Ak its shape. If the a jk's are of

similar magnitude, then the k th cluster will tend to be nearly hyperspherical, while if a2k << 1, it

will be concentrated about a line, and if a 2 = 1 and 3 << 1 it will be concentrated about a

two-dimensional plane in p -space.



-5-

This analysis suggests that the sum of squares criterion is likely to be most appropriate

wh,.. the clusters are all hyperspherical with the same dispersion (Symons, 1981). The criterion

of Friedman and Rubin (1967) is likely to work best when the clusters are ellipsoidal with the

same orientation, size and shape. The criterion of Scott and Symons (1971) allows clusters of

different orientations, sizes and shapes, but its very generality and lack of parsimony may cause

problems. For example, Symons (1981) reported that criteria designed for clusters of different

shapes may produce clusters of different shapes and sizes even when presented with

homogeneous-shaped clusters that are close together. The criterion of Frieci1ta,, qzr Rubin

(1967) is based on the assumption that Dk, Xk and Ak are the same for each cluster, while the

criterion of Scott and Symons (1971) assumes them all to be different. By allowing some but not

all of these quantities to vary between clusters, we obtain criteria that are appropriate for various

intermediate situations.

Assuming that Yk = Xkl leads to a generalization of the sum of squares criterion. The fact

that Yk is a multiple of the identity matrix indicates that the underlying densities are spherical.

Allowing Xk to vary between densities allows the sizes of the clusters to differ. The resulting

criterion to be minimized is

G W

k=1

Our analysis indicates that this criterion will be most appropriate when the clusters are

hyperspherical, but of different sizes.

Next, we allow the orientations to vary while keeping size and shape constant, by requiring

that )Lk = X, Ak =A (k = 1, ... ,G) where A is known, and by allowing the Dk's to vary between

p
clusters. By noting that Ilk I = XP 1 0cj, replacing Dk and X in (2.2) with their maximum

j=1

likelihood estimators and writing the eigenvalue decomposition of Wk as

Wk = Lk Qk L k (2.4)

where f~k =diag ((01k, ... ,(Opk) and (Ojk is the jth eigenvalue of Wk, we see that the resulting
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G
log-likelihood is maximized by choosing y so as to minimize S = 1 Sk, where Sk = tr(A -

k=1

When p=2, this is the criterion that underlies the clustering method of Murtagh and Raftery

(1984).

We now allow both size, Xk, and orientation, Dk, to vary between clusters, while assuming

that the shape matrix A is constant across clusters. In this setting, the maximum likelihood

estimator of y is obtained by minimizing

G
S* = nk log(Sk/nk). (2.5)

k=1

Table 1 shows the relationship between the different criteria discussed in this section.

Table 1

Constraints imposed on clusters by different criteria

Criterion Origin Distribution Orientation Size Shape

tr(W) Ward (1963) Spherical None Same Same

I WI Friedman and Ellipsoidal Same Same Same
Rubin (1967)

S Murtagh and Ellipsoidal Different Same Same
Raftery (1984)

G

Y, nk log tr(Wk/nk) This article Spherical None Different Same
k=1

S * This article Ellipsoidal Different Different Same

G nk log Scott and Ellipsoidal Different Different Different
k=1 Symons (1981)

It is usually not feasible to find the global minimum by evaluating the criterion for all

possible partitions of the observations. Many algorithms have been devised for finding local

minima or good sub-optimal solutions, particularly for the sum of squares criterion. These

involve agglomeration, iterative relocation or other methods; for reviews see Gordon (1981,
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1987), Murtagh (1985) and Jain and Dubes (1988). Algorithms developed for the sum of

squares criterion can be adapted for use with the other criteria in Table 1. For example, Murtagh

and Raftery (1984) showed how Ward's (1963) agglomerative hierarchical method based on the

sum of squares criterion can be generalized for use with the criterion S.

3. NON-GAUSSIAN CLUSTERING AND NOISE

3.1 Non-Gaussian clustering: The uniform-normal case

The model (1.1) is general enough to encompass ciusters with non-Gaussian distributions.

To date, attention has been focused on the multivariate normal distribution because it leads to

relatively simple criteria. Here we suggest practical criteria for some non-Gaussian situations.

The basic idea is the use of a local parameterization. We assume that there are matrices

Dk (k = 1, ... ,G) such that if zi =Dri (xi-tLy,), then zi has the density gy,(zi;0); often these

densities will be the same, perhaps modulo a scale parameter. In this general framework, criteria

can be derived by maximizing the likelihood, as in Section 2. When the distribuiion of xi is

MVN(t~,,y-..), and Dk is defined by (2.3), then zi is the value of xi in the local coordinate

system with origin at tL, and axes along the principal components of YV,"

We now carry out a more detailed analysis of one specific, but important, non-Gaussian

situation. This is when observations are clustered uniformly along and tightly about a line

segment in p -space. Such situations arise in ecology when the data include the geographic

locations of plants or animals which may be clustered about roughly linear natural features such

as rivers or valleys. They also arise in unsupervised pattern recognition, where observations may

be edge elements in an image, or data points in a point pattern with a linear feature.

We let ui=zil, and vi=(vil, . . . vi,,-l)T (zi2 . zid . We assume that ui is

uniformly distributed between O, and 0,,2, and that vi -MVN(O, Ek). Let 4 k = Ok2- OkI and

Ek 2I; typically ok will be small compared to 4 k.



-8-

We now derive an approximate maximum likelihood estimator for y under this model. We

estimate Dk by 6k =L., where Lk is defined by (2.4), and we estimate glk by l'k = xk. We then

define ii =6y, (xi-i,), with corresponding definitions for tij and ii. Conditionally on these

estimated values of Dk and ilk, the log-likelihood for 4- (01, ... G ) and yis

G 2+ 1 (3.1))
l(x; 0, c'2, 7) = const. - Y, Inklog90k +/2(p-1)nk logoyk .2 -- 1 i} (3.1)

k=1 2(3k iCEk

If we assume that 02= o2 (k = 1,. .. G ), then the log-likelihood in equation (3.1) is maximized

by

*k = max {di -min{i},
iEEk iEEk

2= (np-1) -1

i=1

We therefore choose y so as to minimize the criterion

G
(p-1)n logo 2 + I nklogk. (3.2)

k=1

In the situation where the Ca2's are not constant across clusters we obtain

- 1  T

i e Ek

and y is chosen so as to minimize the criterion

G
U = , { (p-1)n0log2+nklogk}. (3.3)

k=1

Many variations on this "uniform-normal" theme are possible, and lead to simple criteria.

For example, clusters may be distributed tightly about a two-dimensional planar region in p -

space; this can be represented by specifying the distribution of (zi 1, zi 2) to be concentrated on

such a region. Also, the distribution of the scatter about the main line segment or planar region

may be more general than assumed above, leading, for exampl" to a range of values for the

covariance matrix of vi, such as those considered in Section 2.
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3.2 Allowing for noise

So far, we have assumed that each observation belongs to a cluster. lowever, even when a

data set is made up mainly of clusters of the prescribed type, there may be other data points that

do not follow this pattern. We allow for this possibility by extending our model to include such

G
observations, assumed to arise from a Poisson process with intensity v. Let E = t..Ek and

k=l

G
n 0=n- I.n k . Then the likelihood (1.1) is modified as follows:

k=1

L (x; 0, v, y) =vnoe -vA -fy(x,), (3.4)
ieE

where A is the hypervolume of the region from which the data have been drawn. The clustering

criteria developed so far can easily be modified so as to be based on (3.4). Taking account of

noise in this way facilitates our proposed method for choosing the number of clusters, described

in Section 4.

4. CHOOSING THE NUMBER OF CLUSTERS: AN APPROXIMATE BAYESIAN

APPROACH

Here we suggest an approximate Bayesian approach to the choice of the number of clusters.

We first write down an exact Payesian solution, but this usually cannot be computed in a

reasonable amount of time. Arguing heuristically, we obtain an approximation to the Bayesian

solution which seems to work well in numerical experiments, some of which are reported in

Section 6.

We view the problem of estimating the number of clusters as one of choosing between

competing models for the same data. The exact Bayesian solution consists of finding the

posterior probability p (G I x) of each number of clusters G given the data x. This approach

seems to have advantages over the alternative of hypothesis testing in the general context of

model comparison, as it avoids the problems of multiple comparisons, comparing non-nested

models, and the tendency of hypothesis tests to select unparsimonious models when the sample



- 10-

size is large (Berger and Sellke 1987; Raftery 1986b, 1988b). The details have been worked out

for many statistical problems, including the general linear model (Smith and Spiegelhaler

1980), generalized linear models (Raftery 1986a, 1988b), change-points and point processes

(Akman and Raftery 1986; Raftery and Akman 1986), and software reliability (Raftery 1987,

1988a).

Technically, it is easiest to start with the Bayes factor, or ratio of posterior to prior odds for

G =r against G =s, defined by

Brs =p(x I G=r)/p(x I G=s). (4.1)

In (4.1), p (x I G =r) is the marginal likelihood

p(x I G=r)= I ffL(x;O,v,T)p(O,v,y)dOdv,
TFE r,

where F, = (0,1,. . . ,r }", L(x;0,v,y) is the generalized likelihood defined by (3.3), and

p (0, v, y) is the joint prior density of 0, v, and y. When yi =0, xi belongs to the "noise" and

appears in the Poisson part of the likelihood (3.3). A different but related approach is described

by Rissanen (1988).

Here we concentrate on the approximate calculation of Br,,, (r=l, .... n-l). This

yields posterior probabilities p (G =r I x) directly, as follows. Noting that

s-r
Brs = HBr+tul.r+t (r<s) and Bsr =Brs), we calculate Brso for r=l. n-1 and some fixed

t=l

s o. Then

n-I
p(G=r I x)=BrsoP(G=r)/ , B1soP(G=t), (4.2)

where p (G =r) is the prior probability that there are r clusters.

We approximate Br~r+ l as follows. In an agglomerative hierarchical clustering algorithm,

the choice between G=r+l and G=r is a decision whether or not to merge two particular

clusters into one. In the p-dimensional multivariate normal case, this is exactly a standard

comparison of nested hypotheses in the general linear model, and Smith and Spiegelhalter
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(1980) have shown that in that case minus twice the logarithm of the Bayes factor is

approximately equal to

Xr -!+log(pnrr+)) 8r, (4.3)

where Xr is the likelihood ratio test statistic, 8r is the number of degrees of freedom in the

asymptotic chi-square distribution of Xr, and nrr+l is the number of observations in the merged

cluster. However, (4.3) is invalid in the clustering context because the regularity conditions on

which it is based do not hold. Wolfe (1971) suggested getting around the problem by doubling

the number of degrees of freedom, and Hernandez-Alvi (1979) found that to be a reasonable

approximation. Aitkin, Anderson and Hinde (1981) had some reservations about the use of

Wolfe's (1971) approximation when 8,r is large, but the simulations of Everitt (1981) showed it

to perform well for values of 8, between 1 and 5, which is the range of primary interest to 'is.

We therefore use the approximation

-21ogB,,r+l X, - { -+log(pnr.r+)} 2 6,

Er, (4.4)

where 8,. is now the decrease in the number of parameters caused by going from G=r+l to

G=r.

In Table 2, for the case where the data are two-dimensional, we show the values of 8r and

the individual cluster parameters that must be estimated for the clustering criteria from Sections

2 and 3. We write D =rcosyI -sinV4
= six cosn] where Nf is the orientation of the cluster. For the criteria

in Section 3, ok can be superefficiently estimated, and so it is not included in the count. The

term X r in (4.4) involves only the contributiuns to the likelihood of the clusters involved in the

merger. If we define the maximized likelihoods for the two clusters that are merged as Ik. and 'k-

and the maximized likelihood for the cluster resulting from the merger as lk, we may write

Tr = -2(lk + tk h - mk ) (4.5)

The likelihoods for the clusters that are not involved in the merger cancel out in the likelihood
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ratio.

Table 2
Decrease in the number of parameters caused by reducing

the number of clusters by one, for several criteria.

Criterion Sr  Parameters

tr(W) 2 gax,

IW 2 ga ,

S 3 g, ,
G
Y nk log tr(Wk/ n k) 3 l , )1k

k=1

S 4 laxly, lXk

G Wk
Y nklog1- 1 5 9X, 1y, WXk, a2k
k=1 n k

Equation (3.2) 3 9X I JY' V

U 4 2X, , 1/,

If we assume that the clusters are embedded in a Poisson process, the outcomes of the

mergers are slightly more complicated since at each stage in the agglomerative process the

number of clusters, G, can increase, decrease or remain the same. The reason for this is that we

have two types of data, clusters and noise. If we form a new cluster by merging two singletons

that were considered noise, then G will increase. If we merge a singleton with an existing

cluster, then G will not change. If two existing clusters are merged, then G will decrease. If

two singletons are merged to form cluster k, then X, = 2 1k, and 8r for the merger is equal to

minus the value of 8, given in table 2. If a singleton is merged with cluster k' to form cluster k

then Xr = - 2 (lk'- lk) and Sr = 0 since the parameterization has not changed. When two existing

clusters, k and k, are merged to form cluster k, X, is given by equation (4.4) and 8, is as given

;n Table 2.

Having obtained Brr+i (r = 1, .... n-l) from (4.4), we may calculate

p(G=r Ix) (r=l, . . . ,n-l) using (4.2). A simple approach is to use as an estimate of the
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number of clusters the value of r for which p (G =r I x) is greatest. However, (4.4) provides a

rather crude approximation to p (G =r I x). We therefore prefer to consider several values of the

number of clusters, guided by the values of p (G =r I x), or, equivalently, by
r-I

Fr = E, =constant+2 logp (G=r I x). Following Good (1983), we refer to Fr as the
t=l

approximate weight of evidence (AWE) for the number of clusters being r. In our experience,

the change in the approximate weight of evidence, Er = Fr+1 -F, is often large and positive for

the first few values of r, r = 1, . . . R, say, and small or negative thereafter. If that is the case,

considerations of parsimony lead us to consider G =R+I, as well as the value of r which

maximizes the approximate weight of evidence, and any intervening values.

5. SIMULATION RESULTS

To compare the performance of our clustering criteria with that of standard, commonly

used criteria, we carried out a Monte Carlo study. The standard criteria used were the single-link

method (SL), and Ward's sum of squares criterion, tr(W). These were compared with the three

criteria S, introduced for two dimensions by Murtagh and Raftery (1984) and generali2 .d in

Section 2, S * defined by (2.5), and U defined by (3.3).

To compare the criteria we generated 100 random samples from each of three types of d ,ta

for each of four values of a, giving a total of 1200 samples. The three types of data correspon,'

to the three models for which S, S* and U are optimal criteria. When generating the data for

which U was optimal, Ok was generated from a U(.2, .6) distribution and 62 was proportional to

¢k2 . Each sample consisted of three clusters, the orientation of each cluster was randomly

chosen from a U(0, 7t) distribution, and the centers were randomly chosen in the unit square.

The number of points in each cluster was generated from a discrete uniform distribution on the

integers between 15 and 25.

Tables 3, 4 and 5 show the proportion of points misclassified by each of the five criteria

considered. The single-link method performed poorly, while Ward's sum of squares did only
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slightly better. The three criteria S, S* and U all performed much better. Of these three, S * did

marginally better than the others, but the differences between them were small. As one might

expect, each of the three criteria S, S* and U performed best on the type of data for which it

was designed, but it also performed well on the other kinds of data.

The clear superiority of S, S* and U to the single-link and Ward's method held for each

combination of the three kinds of data with the four values of ox. The results for the three kinds

of data were quite similar. As a increased, the proportion of points misclassified by S, S* and U

increased. This reflects the fact that as cc increases, the data generating mechanism more closely

approximates that for which tr(W) is the best criterion, and so the superiority of S, S* and U

becomes less marked. Averaged over the 1,200 random samples generated, the proportion of

points misclassified was 16% for S, 14% for S*, 15% for U, 47% for the single-link method and

43% for Ward's sum of squares.

It is assumed that some prior information about cx is available. This can come from a

training sample or knowledge of the mechanism generating the data, for example the resolution

of the edge detector used in processing a digital image. Our numerical work, including the

analysis of Example 3 described in Section 6.3, indicates that our criteria are not sensitive to

errors in the estimation of a. In the simulation study the correct value of a was used in S, S

and U. This provides information on the best performance that can be expected.

6. EXAMPLES

6.1 Example 1: Simulated clusters

Figure l(a) shows three clusters generated from bivariate normal distributions with the

same shape but different sizes and orientations. It is typical of the 400 random samples for

which the results are summarized in Table 4.
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0 Cluster 1
A Cluster 2
c> Cluster 3

(a) (b)

A ,o
A 0 0

4,°  0 •

(c) (d)

Figure 1. (a) Three clusters generated from bivariate normal distributions with the same
shape but different sizes and orientations. The solid lines are the convex hulls of the groups.
(b) The clusters formed by the S* criterion. The filled-in symbols represent misclassified
points. For example, the filled-in triangle at the top right-hand comer was classified as a dia-
mond, but in fact is a circle. (c) The clusters found by Ward's sum-of-squares criterion, tr(W).
(d) The clusters found by the single-link method.



-16-

Table 3
Bivariate normal clusters with the same size and shape but different orientations. S is the
optimal criterion. 100 random samples were generated for each value of x. The entries in the
table are the percentages of points misclassified.

a
Criterion

.001 .005 .01 .025

S 4 13 16 25
S * 4 16 18 24

U 7 19 26 30

SL 51 51 52 52
tr(W) 40 41 41 40

Table 4
Bivariate normal clusters with the same shape but different sizes and orientations. S* is the
optimal criterion. 100 random samples were generated for each value of x. The entries in the
table are the percentages of points misclassified.

X
-. Criterion

.001 .005 .01 .025

S 14 17 24 31

S * 7 12 17 22
U 7 12 18 26

SL 46 47 50 48
tr(W) 48 48 46 46

Figures l(b,c,d) show the results of grouping the data into three clusters using the criteria

S , tr(W) and SL respectively. The S * criterion performed well. Three of the four misclassified

points are within or close to the intersections of the clusters. This is inevitable, since even the

human eye, with its remarkable pattern recognition and classification abilities, finds it hard to

classify points at the intersection of clusters. Ward's criterion, tr(W), misclassified 18 of the 45

points and did not reproduce the general shape of the clusters. As can be seen from Figure 1(c),
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Table 5
Bivariate uniform-normal clusters. The observations are clustered uniformly along and tightly
about a line segment in two-dimensional space, as described in Section 3.1. U is the optimal
criterion. 100 random samples were generated for each value of a. The entries in the table are
the percentages of points misclassified.

Criterion
.001 .005 .01 .025

S 4 11 13 18

S 5 9 12 19

U 3 7 9 14

SL 38 41 45 43

tr(W) 43 41 44 43

it tends, instead, to find "circular" clusters. The single-link method has been suggested for

finding long clusters such as those in Figure 1 (a). However, as can be seen from Figure 1 (d) and

Tables 3, 4 and 5, it does not perform well when the clusters intersect.

Clusters that are physically separate, in whatever metric is being used, are easy to

distinguish with most clustering criteria. The clusters we have been working with are

distinguished from each other by their structure. A point within one cluster may be closer, in

Euclidean distance, to points in other clusters than to any point in the cluster to which it belongs,

yet we are able to classify it correctly due to the structure of the clusters. For example, consider

Figure 1(b). Note the two points on the left that have been correctly classified as belonging to

cluster 2 (triangles) yet they are closer to points in cluster 3 (diamonds) than to any point in

cluster 2. Criteria based strictly on distance measures, such as the single link method, are unable

to handle clusters that are defined by their structure.
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6.2 Example 2: Simulated clusters with noise

Figure 2 shows three clusters with added noise. The clusters were generated from bivariate

normal distributions with the same shape but different sizes and orientations while the noise was

generated by a Poisson process. This example differs from Example 1 in that noise has been

added and that we do not assume the numbers of clusters to be known in advance.

After clustering the data in Figure 2 using S* in a hierarchical agglomeration procedure,

the approximate weight of evidence (AWE) was calculated at each iteration, as shown in Figure

3. The AWE is maximized at iteration 47 and falls off sharply after that, indicating that the

clustering algorithm should be stopped at the 47th iteration. Figure 4 shows the results at

iteration 47 after using an iterative relocation algorithm to improve upon the original

agglomerative results. The three main clusters are well-defined with one misclassification, and

only one of the noise points has been misclassified.

6.3 Example 3: Diabetes data

Reaven and Miller (1979) described and analyzed data consisting of the area under a

plasma glucose curve (Glucose Area), the area under a plasma insulin curve (Insulin Area) and

steady state plasma glucose response (SSPG) for 145 subjects. The subjects were clinically

classified into three groups, chemical diabetes, overt diabetes and normal (non-diabetic).

Symons (1981) reanalyzed the data using seven different clustering criteria. Taking the clinical

classification to be correct, we evaluate one of our criteria and compare it with those considered

by Symons (1981), using the data as published in Andrews and Herzberg (1985).

Reaven and Miller (1979, Figures 1-4) showed four two-dimensional projections of the

data. The data have the 3-dimensional shape of a boomerang with two wings and a fat middle.

One of the wings corresponds to patients with overt diabetes, the other wing is composed

primarily of patients with chemical diabetes and the "fat middle" is composed of normal

patients. By viewing the data using a rotating 3-dimensional scatterplot, such as the ones

provided in MacSpin (Donoho, Donoho and Gasko, 1988) or XLISP-STAT (Tierney, 1988), this
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Figure 2. Three clusters with noise. The clusters were generated from bivariate normal distri-
butions with the same shape but different sizes and orientations. The noise was generated
from a Poisson process.
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Figure 3. Approximate weight of evidence (AWE) for the number of clusters in Figure 2
using the criterion S*. The maximum occurs at iteration 47 and leads to the clusters shown
in Figure 4.
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Figure 4. The clusters resulting from the data in Figure 2 using the criterion S* and stopping
at the 47th iteration as indicated by the AWE in Figure 3.
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structure is obvious and several other features become apparent. One of the "wings" is almost

planar, the other is linear with some curvature, and the "fat middle" has a shape similar to an

American football. Four two-dimensional projections of the data are shown in Figure 5.

Based on this information, we could use the approach developed in Sections 2 and 3 to

design a purpose-built clustering criterion for this application. However, we prefer to use a very

general criterion of the form S*, where Ak = diag{ 1,ac, cx). This criterion is optimal for trivariate

normal clusters with different sizes and orientations but the same "tubular" shape, clustered

circularly about a line in R3 . The estimated values of cx for the three clinically identified groups

are .09, .19 and .34. The results were relatively insensitive to changes in ax so long as it

remained in that broad range. The results we report are for ax = .2.

Starting from the correct clinical classification and using a single point iterative relocation

algorithm with the criterion S*, the optimal classification, as given in Table 6, resulted in only

10% of the points being misclassified. This compares favorably with the results given by all

seven clustering criteria used by Symons (1981) for this data set. We also used a hierarchical

agglomerative clustering algorithm followed by iterative relocation. Once again, the results

compare favorably with those of Symons (1981). The clusters found are shown in Figure 6.

The AWE for the hierarchical agglomerative clustering algorithm increased steadily until

the final 5 iterations. Figure 7 shows the number of clusters versus the AWE over the last 20

iterations. From this it can be seen that the AWE increases sharply as one goes from one cluster

to two, and again from two to three. It increases slightly as the number of clusters goes up to four

and five, and decreases thereafter. If we did not know the true number of clusters this would

lead us to focus attention on the groupings into three, four and five clusters, and to perfonn a

more detailed analysis on these sets of clusters.
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Figure 5. Four two-dimensional projections of the three-dimensional diabetes data of Reaven
and Miller (1979). The symbols indicate the clinical classification of subjects as having
chemical diabetes, overt diabetes or beig normal. (d) Shows the approximate projections
represented by the artist's sketch in Reaven and Miller (1979) and reproduced in Symons
(1981).
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Figure 6. The three clusters in the diabete- dta found by hierarchical agglomeration fol-
lowed by iterative relocation using the criterion S' with Ak = diag I1. 2,.21. The two-
dimensional projection shown is that of Figure 5(c). The symbols indicate the classification
of the subjects based on the clustering algorithm. The filled-in symbols represent subjects
whose clustering classification differs from the clinical classification.
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Figure 7. Approximate weight of evidence (AWE) for the number of clusters in the diabetes
data over the last 20 iterations of the clustering algorithm. The AWE increases sharply up to
three clusters, with further slight increases up to five clusters, and decreases thereafter. This
would lead us to focus on the groupings into three, four and five clusters.
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Table 6
Results of clustering the diabetes data. The first row shows the result of single point iterative
relocation using the criterion S with Atk=diag(l,.2,.2), starting with the clinical
classification. The second row shows the result of hierarchical agglomeration followed by
iterative relocation with the same criterion. The remaining rows show the results of seven other
clustering procedures, starting at the clinical classification, as reported by Symons (1981).
Criterion (13) of Symons (1981) is due to Maronna and Jacovkis (1974). The error rate % is the
percentage of the subjects who were not classified in the same way by the clustering method as
by the clinical diagnosis.

Error Clinical classification

Method rate % Normal Chemical Overt

(76,0,0) (0,36,0) (0,0,33)

S* from clinical 10 (65,0,0) (11,36,4) (0,0,29)

S * agglomerative 10 (65,0,0) (11,36,4) (0,0,29)

IWI 19 (73,17,3) (3,19,4) (0,0,26)

Reaven and Miller (1979) 14 (73,10,1) (3,26,6) (0,0,26)
variant of IW1

(8) in Symons (1981) 26 (75,30,6) (1,6,1) (0,0,26)

(10) in Symons (1981) 26 (75,30,6) (1,6,1) (0,0,26)

(13) in Symons (1981) 13 (73,10,0) (3,26,7) (0,0,26)

(11) in Symons (1981) 14 (63,0,0) (13,30,2) (0,6,31)

(12) in Symons (1981) 13 (73,9,0) (3,27,7) (0,0,26)

7. DISCUSSION

We have proposed ways of overcoming some of the limitations of the classification

maximum likelihood procedure for cluster analysis, as currently implemented. These are (1) the

inability to specify some but not all features (orientation, size, shape) to be constant across

clusters; (2) the restriction to normal distributions; and (3) the failure to account for "noise". We

have also proposed an approximate Bayesian solution to the problem of choosing the number of
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clusters, which seems to avoid some of the ditficulties associated with solutions to this problem

based on significance testing.

In the context of Gaussian clustering, we reparameterize the covariance matrices in terms

of their eigenvalue decompositions. Each group of parameters then corresponds clearly to a

particular feature of the cluster (orientation, size or shape), and criteria appropriate for a range of

different situations result by constraining none, some or all of these features to be constant

across clusters. This leads to a range of criteria which are more general than that of Friedman

and Rubin (1967) and more parsimonious than that of Scott and Symons (1971) for the unequal

covariance case. The reparameterization of covariance matrices in terms of the eigenvalue

decomposition has also been considered by Flury (1988) although he did not view it in the

context of cluster analysis and he assumed the eigenvector matrices, Dk, to be the same across

all groups.

A general and practical approach to non-Gaussian clustering is introduced. It is developed

in detail for the important special case where points are distributed uniformly along and tightly

about a line segment in p -space. "Noise" is allowed for by permitting isolated observations to

be distributed over the data region according to a Poisson process. We propose an approximate

Bayesian method for choosing the number of clusters. We also write down the exact Bayesian

solution, which is optimal given the model, but is usually not computable; our approximation

seems to perform well in numerical examples.

An alternative specification of the model (1.1), which leads to the so-called mixture

maximum likelihood approach, has been considered by Wolfe (1970), Symons (1981),

McLachlan (1982) and McLachlan and Basford (1988). This assumes that x is a random sample

from a mixture of the G densities fk (x; 0) (k =1, . . .,G ) in the proportions E = (E, .... IE; )T.

Then 0 and e are estimated, and conditional probabilities p (yi=k I x, ,e) are calculated.

Marriott (1975) and Bryant and Williamson (1978) showed that when, unlike here, estimation of

0 is of primary interest, then the classification maximum likelihood method is inconsistent.

However, when the covariance matrices are unequal, the mixture maximum likelihood approach



- 28 -

appears to break down in practice (Day 1969). McLachlan and Basford (1988, Section 2.1)

discuss some theoretical results which suggest that it may be possible to apply the mixture

maximum likelihood approach when the covariance matrices are unequal, but this does not seem

to have been done yet. If it could be done, it seems likely that the methods proposed in this paper

could also be extended to the mixture maximum likelihood approach using the EM algorithm

(McLachlan and Basford, 1988, Section 1.6).

The classification and mixture maximum likelihood approaches are in conflict only when

the primary aim is to estimate 0; the conflict is resolved when, as here, the aim is to estimate y,

and 0 is a nuisance parameter. This is easiest to see in a Bayesian framework, where the full

solution is the posterior distribution p (y I x). It follows from equation (2.2) of Binder (1978) that

this is the same under the two models when the prior for y in (1.1) is hierarchical and compatible

with the prior for e in the mixture model. Thus the classification maximum likelihood solution y

may be viewed as a approximation to the posterior mode of y under both models.
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